ABSTRACT ALGEBRA QUALIFYING EXAM PROBLEM SESSION: FIELD AND GALOIS THEORY

CALEB SPRINGER

Let me know if you find typos or have questions!
Email: cks5320@psu.edu

Unless noted otherwise, the questions come from:
 The Pennsylvania State University's Abstract Algebra Qualifying Exam (2008-2020). https://math.psu.edu/graduate/qualifying-exams

1. Polynomials

Problem 1 (Fall 2008). Let \mathbb{F}_{11} be the field of 11 elements and let K be the splitting field of $x^{3}-1$ over \mathbb{F}_{11}. How many roots does $\left(x^{2}-3\right)\left(x^{3}-3\right)$ have in K ?

Problem 2 (Fall 2010). Determine the degree of the irreducible factors of $x^{n}-1$ over \mathbb{Q} where $n=3 \cdot 7 \cdot 11$.
Problem 3 (Fall 2011). Let K be a field of characteristic $p>0$. Take a polynomial $f(X)=X^{p}-X-c$ in $K[X]$, and suppose that f has one root α in K. Prove that

$$
f(X)=(X-\alpha)(X-(\alpha+1)) \cdots(X-(\alpha+p-1))
$$

in $K[X]$.

2. Degrees of Field Extensions

Problem 4 (Fall 2009). In \mathbb{C}, let $\beta=\sqrt[3]{2}$, the real cube root of 2 and let $\omega=\frac{1}{2}(-1+\sqrt{-3})$. Set $\alpha=\beta \omega$.
(a) Prove that $\beta+\alpha$ has degree 3 over \mathbb{Q}.
(b) Prove that $\beta-\alpha$ has degree 6 over \mathbb{Q}.

Date: November 14, 2020.

Problem 5 (Fall 2011). Let K be a field and let $E=K(\alpha)$ be an extension field of degree $[E: K]=37$. Prove that $K\left(\alpha^{3}\right)$ is also equal to E.

Problem 6 (Spring 2013, Fall 2019). Let K be a field and let L be an extension field of K. Let $u \in L$ and assume that the minimal polynomial of u over K is $x^{n}-a$ for some $a \in K$. Let $n=m d$ for positive integers m, d.
(a) Show that $\left[K\left(u^{m}\right): K\right]=d$.
(b) What is the minimal polynomial of u^{m} over K ?

3. Fields and Galois Theory

Problem 7 (Fall 2009). Let K be a field. Show that every automorphism ϕ of $K(t)$, the rational functions over K, fixing all elements of K is of the form

$$
\phi: t \mapsto \frac{a t+b}{c t+d}
$$

where $a, b, c, d \in K$ and $a d-b c \neq 0$.
Problem 8 (Spring 2012). Suppose E / K is a Galois extension with abelian Galois group. Prove that all fields intermediate between E and K are Galois extensions of K.

Problem 9 (Spring 2014). Suppose that $f \in \mathbb{Q}[x]$ is an irreducible polynomial and that $\alpha, \beta \in \mathbb{C}$ are roots of f. Suppose that $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ is such that K / \mathbb{Q} is a finite Galois extension. Show that $\mathbb{Q}(\alpha) \cap K$ is isomorphic to $\mathbb{Q}(\beta) \cap K$.

Hint: We know there is an isomorphism $\sigma: \mathbb{Q}(\alpha) \rightarrow \mathbb{Q}(\beta)$ sending α to β. Show that σ map extends to an automorphism of some larger field that sends K to K.

4. Constructing Examples of Galois Field Extensions

Problem 10 (Fall 2014). Let $K=\mathbb{Q}\left(\frac{-1+\sqrt{-3}}{2}\right)$. Give an example of two non-isomorphic fields extensions L_{1} and L_{2} of K such that $\operatorname{Gal}\left(L_{1} / K\right) \cong$ $\operatorname{Gal}\left(L_{2} / K\right)=\mathbb{Z} / 3 \mathbb{Z}$. Justify your claim.

Problem 11 (Fall 2015). Construct an extension field K of \mathbb{Q} such that K / \mathbb{Q} is Galois and the Galois group of K over \mathbb{Q} is cyclic of order 5 .

Problem 12 (Fall 2017). Prove the existence of an extension K of \mathbb{Q} such that K is a Galois extension of \mathbb{Q} with Galois group the cyclic group of order 7.

5. \star Computing Galois Groups and Intermediate Fields \star

 Problem 13 (Fall 2008, Spring 2018). Let $K=\mathbb{Q}(\alpha)$ where $\alpha \in \mathbb{C}$ is a root of $f(x)=x^{6}+3$.(a) Show that K contains the primitie sixth roots of unity, $(1 \pm \sqrt{-3}) / 2$.
(b) Prove that K is Galois over \mathbb{Q} and determine its Galois group.
(c) Give explicit generators for each of the intermediate fields $F, \mathbb{Q} \subseteq F \subseteq K$.

Problem 14 (Spring 2009). Let K be the splitting field of $x^{33}-1$ over \mathbb{Q}, the field of rational numbers. Determine all subfields of K (including K and \mathbb{Q}), and make a diagram showing all inclusions among them.

Problem 15 (Spring 2010). Determine the splitting field for $f(x)=\left(x^{2}-\right.$ 5) $\left(x^{2}+2 x+2\right)$ over the rational field \mathbb{Q}. Describe explicitly the elements in its Galois group and list the subgroups and the corresponding intermediate fields.

Problem 16 (Spring 2010). (a) Let K be the splitting field of $x^{48}-1$ over \mathbb{F}_{9}, the field with 9 elements. Determine the cardinality of K and make a diagram showing all subfields of K and the inclusion between them.
(b) How many roots does $\left(x^{2}-5\right)\left(x^{3}-7\right)$ have in K ?

Problem 17 (Spring 2011). The polynomial $X^{3}-21 X+35$ is irreducible in $\mathbb{Q}[X]$.
(a) Let α be a root (in some extension). Show that $\alpha^{2}+2 \alpha-14$ is another root.
(b) Prove that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} with Galois group cyclic of order 3.

Problem 18 (Fall 2012, Spring 2019). Let F be the splitting field of $f=$ $x^{4}-11$ over \mathbb{Q}. Show that $G=\operatorname{Gal}(F / \mathbb{Q})$ is isomorphic to D_{4}, the dihedral group of order $8=4 \cdot 2$.

Problem 19 (Fall 2013). Suppose that $\alpha \in \mathbb{C}$ with $\alpha^{n} \in \mathbb{Q}$ such that $\mathbb{Q}(\alpha) \supseteq$ \mathbb{Q} is Galois. Further suppose that F is the field containing \mathbb{Q} generated by all the roots of unity in $\mathbb{Q}(\alpha)$. Show that $\operatorname{Gal}(\mathbb{Q}(\alpha) / F)$ is a cyclic group.

Problem 20 (Spring 2013). Let E be a splitting field of $x^{35}-1$ over \mathbb{F}_{8}. Determine the cardinality of E and make a diagram showing all subfields of E and the inclusions between them.

Problem 21 (Spring 2015). Let $f(x)=x^{8}-1$. Find the Galois group of $f(x)$ over each of the following fields:
(a) The rational field \mathbb{Q}.
(b) The field $\mathbb{Q}(i)$.
(c) The field \mathbb{F}_{3} of three elements.

Problem 22 (Spring 2017, Fall 2018). Let $\zeta=e^{\pi i / 6}$ where $i=\sqrt{-1}$.
(a) Find the minimal (monic) polynomial of ζ over \mathbb{Q}
(b) Find the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q}.
(c) Write each subfield of $\mathbb{Q}(\zeta)$ in the form $\mathbb{Q}(u)$ (for an explicit element $u)$.

Problem 23 (Fall 2020). Let $\omega=e^{2 \pi i / 18}$ be a primitive 18-th root of unity
(1) Find the minimal polynomial of ω over \mathbb{Q}.
(2) Compute the Galois group of $\mathbb{Q}(\omega) / \mathbb{Q}$. In particular, determine if the Galois group is cyclic and give generator(s) for it.

