ABSTRACT ALGEBRA QUALIFYING EXAM PROBLEM SESSION: FIELD AND GALOIS THEORY

CALEB SPRINGER

Let me know if you find typos or have questions! Email: cks5320@psu.edu

Unless noted otherwise, the questions come from: The Pennsylvania State University's Abstract Algebra Qualifying Exam (2008-2020). https://math.psu.edu/graduate/qualifying-exams

1. POLYNOMIALS

Problem 1 (Fall 2008). Let \mathbb{F}_{11} be the field of 11 elements and let K be the splitting field of $x^3 - 1$ over \mathbb{F}_{11} . How many roots does $(x^2 - 3)(x^3 - 3)$ have in K?

Problem 2 (Fall 2010). Determine the degree of the irreducible factors of $x^n - 1$ over \mathbb{Q} where $n = 3 \cdot 7 \cdot 11$.

Problem 3 (Fall 2011). Let K be a field of characteristic p > 0. Take a polynomial $f(X) = X^p - X - c$ in K[X], and suppose that f has one root α in K. Prove that

$$f(X) = (X - \alpha)(X - (\alpha + 1)) \cdots (X - (\alpha + p - 1))$$

in K[X].

2. Degrees of Field Extensions

Problem 4 (Fall 2009). In \mathbb{C} , let $\beta = \sqrt[3]{2}$, the real cube root of 2 and let $\omega = \frac{1}{2}(-1 + \sqrt{-3})$. Set $\alpha = \beta \omega$. (a) Prove that $\beta + \alpha$ has degree 3 over \mathbb{Q} . (b) Prove that $\beta - \alpha$ has degree 6 over \mathbb{Q} .

Date: November 14, 2020.

Problem 5 (Fall 2011). Let K be a field and let $E = K(\alpha)$ be an extension field of degree [E:K] = 37. Prove that $K(\alpha^3)$ is also equal to E.

Problem 6 (Spring 2013, Fall 2019). Let K be a field and let L be an extension field of K. Let $u \in L$ and assume that the minimal polynomial of u over K is $x^n - a$ for some $a \in K$. Let n = md for positive integers m, d.

(a) Show that $[K(u^m) : K] = d$.

(b) What is the minimal polynomial of u^m over K?

3. FIELDS AND GALOIS THEORY

Problem 7 (Fall 2009). Let K be a field. Show that every automorphism ϕ of K(t), the rational functions over K, fixing all elements of K is of the form

$$\phi: t \mapsto \frac{at+b}{ct+d}$$

where $a, b, c, d \in K$ and $ad - bc \neq 0$.

Problem 8 (Spring 2012). Suppose E/K is a Galois extension with abelian Galois group. Prove that all fields intermediate between E and K are Galois extensions of K.

Problem 9 (Spring 2014). Suppose that $f \in \mathbb{Q}[x]$ is an irreducible polynomial and that $\alpha, \beta \in \mathbb{C}$ are roots of f. Suppose that $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$ is such that K/\mathbb{Q} is a finite Galois extension. Show that $\mathbb{Q}(\alpha) \cap K$ is isomorphic to $\mathbb{Q}(\beta) \cap K$.

Hint: We know there is an isomorphism $\sigma : \mathbb{Q}(\alpha) \to \mathbb{Q}(\beta)$ sending α to β . Show that σ map extends to an automorphism of some larger field that sends K to K.

4. Constructing Examples of Galois Field Extensions

Problem 10 (Fall 2014). Let $K = \mathbb{Q}(\frac{-1+\sqrt{-3}}{2})$. Give an example of two non-isomorphic fields extensions L_1 and L_2 of K such that $\operatorname{Gal}(L_1/K) \cong \operatorname{Gal}(L_2/K) = \mathbb{Z}/3\mathbb{Z}$. Justify your claim.

Problem 11 (Fall 2015). Construct an extension field K of \mathbb{Q} such that K/\mathbb{Q} is Galois and the Galois group of K over \mathbb{Q} is cyclic of order 5.

Problem 12 (Fall 2017). Prove the existence of an extension K of \mathbb{Q} such that K is a Galois extension of \mathbb{Q} with Galois group the cyclic group of order 7.

5. \star Computing Galois Groups and Intermediate Fields \star

Problem 13 (Fall 2008, Spring 2018). Let $K = \mathbb{Q}(\alpha)$ where $\alpha \in \mathbb{C}$ is a root of $f(x) = x^6 + 3$.

(a) Show that K contains the primitie sixth roots of unity, $(1 \pm \sqrt{-3})/2$.

(b) Prove that K is Galois over \mathbb{Q} and determine its Galois group.

(c) Give explicit generators for each of the intermediate fields $F, \mathbb{Q} \subseteq F \subseteq K$.

Problem 14 (Spring 2009). Let K be the splitting field of $x^{33} - 1$ over \mathbb{Q} , the field of rational numbers. Determine all subfields of K (including K and \mathbb{Q}), and make a diagram showing all inclusions among them.

Problem 15 (Spring 2010). Determine the splitting field for $f(x) = (x^2 - 5)(x^2 + 2x + 2)$ over the rational field \mathbb{Q} . Describe explicitly the elements in its Galois group and list the subgroups and the corresponding intermediate fields.

Problem 16 (Spring 2010). (a) Let K be the splitting field of $x^{48} - 1$ over \mathbb{F}_9 , the field with 9 elements. Determine the cardinality of K and make a diagram showing all subfields of K and the inclusion between them.

(b) How many roots does $(x^2 - 5)(x^3 - 7)$ have in K?

Problem 17 (Spring 2011). The polynomial $X^3 - 21X + 35$ is irreducible in $\mathbb{Q}[X]$.

- (a) Let α be a root (in some extension). Show that $\alpha^2 + 2\alpha 14$ is another root.
- (b) Prove that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} with Galois group cyclic of order 3.

Problem 18 (Fall 2012, Spring 2019). Let F be the splitting field of $f = x^4 - 11$ over \mathbb{Q} . Show that $G = \text{Gal}(F/\mathbb{Q})$ is isomorphic to D_4 , the dihedral group of order $8 = 4 \cdot 2$.

Problem 19 (Fall 2013). Suppose that $\alpha \in \mathbb{C}$ with $\alpha^n \in \mathbb{Q}$ such that $\mathbb{Q}(\alpha) \supseteq \mathbb{Q}$ is Galois. Further suppose that F is the field containing \mathbb{Q} generated by all the roots of unity in $\mathbb{Q}(\alpha)$. Show that $\operatorname{Gal}(\mathbb{Q}(\alpha)/F)$ is a cyclic group.

Problem 20 (Spring 2013). Let *E* be a splitting field of $x^{35} - 1$ over \mathbb{F}_8 . Determine the cardinality of *E* and make a diagram showing all subfields of *E* and the inclusions between them.

Problem 21 (Spring 2015). Let $f(x) = x^8 - 1$. Find the Galois group of f(x) over each of the following fields:

- (a) The rational field \mathbb{Q} .
- (b) The field $\mathbb{Q}(i)$.
- (c) The field \mathbb{F}_3 of three elements.

Problem 22 (Spring 2017, Fall 2018). Let $\zeta = e^{\pi i/6}$ where $i = \sqrt{-1}$.

- (a) Find the minimal (monic) polynomial of ζ over \mathbb{Q}
- (b) Find the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} .
- (c) Write each subfield of $\mathbb{Q}(\zeta)$ in the form $\mathbb{Q}(u)$ (for an explicit element u).

Problem 23 (Fall 2020). Let $\omega = e^{2\pi i/18}$ be a primitive 18-th root of unity

- (1) Find the minimal polynomial of ω over \mathbb{Q} .
- (2) Compute the Galois group of $\mathbb{Q}(\omega)/\mathbb{Q}$. In particular, determine if the Galois group is cyclic and give generator(s) for it.