ABSTRACT ALGEBRA QUALIFYING EXAM PROBLEM SESSION: MODULES

CALEB SPRINGER

Let me know if you find typos or have questions!
Email: cks5320@psu.edu

> Unless noted otherwise, the questions come from:
> The Pennsylvania State University's Abstract Algebra Qualifying Exam (2008-2020). https://math.psu.edu/graduate/qualifying-exams

1. Decomposition into cyclic modules

Problem 1 (Fall 2010). Consider the ring $R=\mathbb{Z}[X]$.
(a) Is R a principal ideal domain? (Prove your answer.)
(b) Find a prime ideal \mathfrak{p} such that R / \mathfrak{p} has four elements.
(c) Show that $M=\mathbb{Z}[X] /\left(X^{2}-X, 4 X+2\right)$ is a finitely generated abelian group. Decompose M into a produce of cyclic groups. What is the order of $|M|$?
Hint: Determine the least $n \in \mathbb{Z} \cap\left(X^{2}-X, 4 X+2\right)$ and the "least" nonconstant polynomial f not in $\left(X^{2}-X, 4 X+2\right)$. Then show that the classes of 1 and f generate M.

Problem 2 (Fall 2012, Fall 2017). Let $R=\mathbb{F}_{2}[t]$ and M be an R-module generated by elements a, b, c subject to the relations

$$
\begin{aligned}
a+t b+\left(t^{2}+t+1\right) c & =0 \\
(t+1) b+\left(t^{2}+t\right) c & =0 .
\end{aligned}
$$

Write M as a direct sum of cyclic R-modules.
Problem 3 (Fall 2019). Let $R=\mathbb{Z}[i]$ denote the ring of Gaussian integers, i.e. $i=\sqrt{-1}$. Let $M \cong R^{3}$ be the free R-module of rank 3. Let $N \subseteq M$ be the
submodule generated by $(1, i, 4)$ and $(2,3+2 i, 14)$. Express M / N explicitly as a direct sum of cyclic R-modules.

Problem 4 (Fall 2020). Let M be a free abelian group of rank n. Let $N \subseteq M$ be a subgroup of the same rank. Choose a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of M and a basis $\left\{y_{1}, \ldots, y_{n}\right\}$ of N, and expand

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, 1 \leq i \leq r, a_{i j} \in \mathbb{Z}
$$

Let A be the $n \times n$ matrix $\left(a_{i j}\right)$ whose i-th row consists of the coefficients in the expansions of y_{i}. Prove that M / N is a finite group of $\operatorname{order}|\operatorname{det}(A)|$.

2. Isomorphism Problems

Problem 5 (Fall 2013). Let R denote the ring $\mathbb{Q}[x]$ and let N denote the R-module $R /\left(x^{2}+1\right)$. Further suppose that M and M^{\prime} are finitely generated R-modules such that

$$
M \oplus N \cong M^{\prime} \oplus N
$$

in other words $M \oplus N$ and $M^{\prime} \oplus N$ are isomorphic as R-modules. Prove that $M \cong M^{\prime}$ as R-modules.

Problem 6 (Spring 2014). Suppose that $R=\mathbb{Z}[i]$ and that M and N are finitely generated R-modules. Suppose further that $P=(1+i)$.
(1) Show that P is a prime ideal.
(2) Suppose that $M \oplus R / P \oplus P$ is isomorphic to $N \oplus R / P \oplus P$. Prove that M and N are isomorphic.

Problem 7 (Fall 2018). Let R be a principal ideal domain. Let a and b be elements of R. Prove that the R-module of R-module homomorphisms from $R / a R$ to $R / b R$ is 0 if $a \neq 0$ and $b=0$. Prove that it is isomorphic to $R / \operatorname{gcd}(a, b) R$ when a and b are both nonzero. In each case, describe explicitly a homomorphism that generates this cyclic module by specifying its value on the image of 1 in $R / a R$.

3. Modules over a Polynomial Ring

Problem 8 (Fall 2015). An R-module M is called irreducible if $M \neq 0$ and if 0 and M are the only R-submodules of M. Let $R=\mathbb{Q}[x]$. Construct two non-isomorphic irreducible R-modules whose underlying abelian group is $\mathbb{Q} \times \mathbb{Q}$.

Problem 9 (Fall 2016, Spring 2019). Let \mathbb{F}_{2} be a field with 2 elements and let $R=\mathbb{F}_{2}[X]$. List up to isomorphism all R-modules with 8 elements that are cyclic. Justify your answer. Give an example of an R-module with 8 elements which is not cyclic.

Problem 10 (Spring 2018). Let R be a PID. Let us consider the quotient $M=R[t] / t^{2} R[t]$ as a module over the polynomial ring $R[t]$. Prove that M is not isomorphic to a direct sum $M_{1} \oplus M_{2}$ of two nonzero $R[t]$ modules M_{1} and M_{2}.

4. Free and Torsion

Problem 11 (Spring 2015). An element m of an R-module M is called a torsion element if $r m=0$ for some nonzero element $r \in R$. Let R be a principal ideal domain. Let F be the fraction field of R. Let R be a principal ideal domain. Let F be the fraction field of R. Let M_{1} and M_{2} be finitely generated R-modules such that

$$
M_{1} \otimes_{R} F \cong M_{2} \otimes_{R} F
$$

(a) Prove that if both M_{1} and M_{2} have no torsion elements then $M_{1} \cong M_{2}$.
(b) Give an explicit example which shows that the conclusion in (a) is false if M_{1} or M_{2} have torsion elements.

Problem 12 (Spring 2017). Let F be a field and R be the ring of all polynomial $f(x) \in F[x]$ with $f^{\prime}(0)=0$. Give an example of a non-free submodule N of a free R-module M.

