ABSTRACT ALGEBRA QUALIFYING EXAM PROBLEM SESSION: MODULES

CALEB SPRINGER

Let me know if you find typos or have questions! Email: cks5320@psu.edu

Unless noted otherwise, the questions come from: The Pennsylvania State University's Abstract Algebra Qualifying Exam (2008-2020).

https://math.psu.edu/graduate/qualifying-exams

1. Decomposition into cyclic modules

Problem 1 (Fall 2010). Consider the ring $R = \mathbb{Z}[X]$.

(a) Is R a principal ideal domain? (Prove your answer.)

- (b) Find a prime ideal \mathfrak{p} such that R/\mathfrak{p} has four elements.
- (c) Show that $M = \mathbb{Z}[X]/(X^2 X, 4X + 2)$ is a finitely generated abelian group. Decompose M into a produce of cyclic groups. What is the order of |M|?

Hint: Determine the least $n \in \mathbb{Z} \cap (X^2 - X, 4X + 2)$ and the "least" nonconstant polynomial f not in $(X^2 - X, 4X + 2)$. Then show that the classes of 1 and f generate M.

Problem 2 (Fall 2012, Fall 2017). Let $R = \mathbb{F}_2[t]$ and M be an R-module generated by elements a, b, c subject to the relations

$$a + tb + (t^{2} + t + 1)c = 0$$

 $(t + 1)b + (t^{2} + t)c = 0.$

Write M as a direct sum of cyclic R-modules.

Problem 3 (Fall 2019). Let $R = \mathbb{Z}[i]$ denote the ring of Gaussian integers, i.e. $i = \sqrt{-1}$. Let $M \cong R^3$ be the free R-module of rank 3. Let $N \subseteq M$ be the

Date: October 26, 2020.

submodule generated by (1, i, 4) and (2, 3+2i, 14). Express M/N explicitly as a direct sum of cyclic R-modules.

Problem 4 (Fall 2020). Let M be a free abelian group of rank n. Let $N \subseteq M$ be a subgroup of the same rank. Choose a basis $\{x_1, \ldots, x_n\}$ of M and a basis $\{y_1, \ldots, y_n\}$ of N, and expand

$$y_i = \sum_{j=1}^n a_{ij} x_j, \ 1 \le i \le r, \ a_{ij} \in \mathbb{Z}.$$

Let A be the $n \times n$ matrix (a_{ij}) whose i-th row consists of the coefficients in the expansions of y_i . Prove that M/N is a finite group of order $|\det(A)|$.

2. Isomorphism Problems

Problem 5 (Fall 2013). Let R denote the ring $\mathbb{Q}[x]$ and let N denote the R-module $R/(x^2+1)$. Further suppose that M and M' are finitely generated R-modules such that

$$M \oplus N \cong M' \oplus N,$$

in other words $M \oplus N$ and $M' \oplus N$ are isomorphic as R-modules. Prove that $M \cong M'$ as R-modules.

Problem 6 (Spring 2014). Suppose that $R = \mathbb{Z}[i]$ and that M and N are finitely generated R-modules. Suppose further that P = (1 + i).

- (1) Show that P is a prime ideal.
- (2) Suppose that $M \oplus R/P \oplus P$ is isomorphic to $N \oplus R/P \oplus P$. Prove that M and N are isomorphic.

Problem 7 (Fall 2018). Let R be a principal ideal domain. Let a and b be elements of R. Prove that the R-module of R-module homomorphisms from R/aR to R/bR is 0 if $a \neq 0$ and b = 0. Prove that it is isomorphic to $R/\operatorname{gcd}(a,b)R$ when a and b are both nonzero. In each case, describe explicitly a homomorphism that generates this cyclic module by specifying its value on the image of 1 in R/aR.

3. Modules over a Polynomial Ring

Problem 8 (Fall 2015). An *R*-module *M* is called irreducible if $M \neq 0$ and if 0 and *M* are the only *R*-submodules of *M*. Let $R = \mathbb{Q}[x]$. Construct two non-isomorphic irreducible *R*-modules whose underlying abelian group is $\mathbb{Q} \times \mathbb{Q}$.

Problem 9 (Fall 2016, Spring 2019). Let \mathbb{F}_2 be a field with 2 elements and let $R = \mathbb{F}_2[X]$. List up to isomorphism all R-modules with 8 elements that are cyclic. Justify your answer. Give an example of an R-module with 8 elements which is not cyclic.

Problem 10 (Spring 2018). Let R be a PID. Let us consider the quotient $M = R[t]/t^2R[t]$ as a module over the polynomial ring R[t]. Prove that M is not isomorphic to a direct sum $M_1 \oplus M_2$ of two nonzero R[t] modules M_1 and M_2 .

4. Free and Torsion

Problem 11 (Spring 2015). An element m of an R-module M is called a torsion element if rm = 0 for some nonzero element $r \in R$. Let R be a principal ideal domain. Let F be the fraction field of R. Let R be a principal ideal domain. Let F be the fraction field of R. Let M_1 and M_2 be finitely generated R-modules such that

$$M_1 \otimes_R F \cong M_2 \otimes_R F$$

- (a) Prove that if both M_1 and M_2 have no torsion elements then $M_1 \cong M_2$.
- (b) Give an explicit example which shows that the conclusion in (a) is false if M_1 or M_2 have torsion elements.

Problem 12 (Spring 2017). Let F be a field and R be the ring of all polynomial $f(x) \in F[x]$ with f'(0) = 0. Give an example of a non-free submodule N of a free R-module M.