ABSTRACT ALGEBRA QUALIFYING EXAM PROBLEM SESSION: RINGS AND IDEALS

CALEB SPRINGER

Let me know if you find typos or have questions! Email: cks5320@psu.edu

Unless noted otherwise, the questions come from: The Pennsylvania State University's Abstract Algebra Qualifying Exam (2008-2020). https://math.psu.edu/graduate/qualifying-exams

1. IRREDUCIBLE POLYNOMIALS

- **Problem 1** (Spring 2011). (a) Let $K = \mathbb{Z}/2\mathbb{Z}$. The only irreducible polynomials in K[X] of degree ≤ 2 are X, X + 1 and $X^2 + X + 1$. Using this, show that $X^5 + X^3 + 1$ is irreducible in K[X].
- (b) Let r and s be odd integers. Prove that $X^5 + rX^3 + s$ is always irreducible in $\mathbb{Q}[X]$. You may use Gauss' Lemma.

Problem 2 (Fall 2016). Let F be a field of prime characteristic p such that the polynomial $X^p - X - 1$ is reducible in F[X]. Show that it splits into a product of p distinct monic linear factors in F[X]. Justify your answers.

2. Describing and Counting (Prime/Maximal) Ideals

Problem 3 (Fall 2008). Let $R = \mathbb{Z}[x]$ be the ring of polynomials in one variable over the integers. For a prime number p, let I_p denote the ideal of R generated by p and $x^2 + 1$. For each of p = 2, 3, 5, determines whether I_p is prime and determine all the maximal ideals of R containing I_p .

Problem 4 (Spring 2009). Let $R = \mathbb{Z}[i]$. For each of the following ideals in R[x, y], decide whether it is a prime ideal, giving your justification. If it is not maximal, give a maximal ideal containing it.

Date: November 2, 2020.

 $\begin{array}{l} (a) \ (x,y) \\ (b) \ (x,2y) \\ (c) \ (x^2+1,y) \\ (d) \ (3,x^2+1,y) \\ (e) \ (5,x^2+1,y) \end{array}$

Problem 5 (Spring 2010, Fall 2019). Determine the maximal ideals \mathfrak{m} of the polynomial ring $\mathbb{Z}[x]$ in one variable over the integers that contain the integer 30 and the polynomial $x^2 + 1$. Give explicitly two generators for each such maximal ideal \mathfrak{m} . How many such maximal ideals are there?

Problem 6 (Fall 2012). Let $R = \mathbb{Z}[x]$ be the ring of polynomials with integer coefficients and $I = (3, x^2+3x+5)$ the ideal in R generated by 3 and x^2+3x+5 . Find all prime ideals of R containing I.

Problem 7 (Fall 2013). Find an ideal I in the ring $A = \mathbb{Z}[x]$ such that A/I has exactly three prime ideals. Identify the ideals and justify your assertion.

Problem 8 (Fall 2014). Let F[x] be the ring of polynomials with coefficients in an algebraically closed field F. Describe, with justification,

(1) All ideals of $F[x] \times F[x]$.

(2) All prime ideals of $F[x] \times F[x]$.

Problem 9 (Spring 2014). Find all prime ideals in $R = \mathbb{Z}[i][x]/(1+i, x^2+2)$.

Problem 10 (Fall 2015). Count the number of prime ideals in the ring

$$\mathbb{Z}[x,y]/(6,(x-2)^2,y^6).$$

How many of these prime ideals are maximal? (The whole ring is not considered a prime ideal.)

Problem 11 (Fall 2017). Let R be the ring $\mathbb{Z}[x]/(x^2-2)$. Which of the following ideals are prime: (0), (2), (3), (7)? Which are maximal?

Problem 12 (University of Michigan, August 2020). Let I be the ideal $(x^2 + 1, y^2 + 1)$ in the ring $\mathbb{Q}[x, y]$. Show that I is not prime and give a prime ideal containing I. (We remind the reader that the ideal (1) is not considered to be prime.)

3. INTEGRAL DOMAINS

Problem 13 (Spring 2012). Suppose that an integral domain D has a field F inside it, and D is a finite-dimensional vector space over F. Prove that D is actually a field itself.

Problem 14 (Fall 2018). Let us consider the ring

$$\mathcal{O} = \{ a + 2b\sqrt{6} \mid a, b \in \mathbb{Z} \}.$$

Prove that the multiplicative group \mathcal{O}^* of invertible elements of \mathcal{O} is infinite.

3.1. Principal Ideal Domains.

Problem 15 (Fall 2010). Consider the ring $R = \mathbb{Z}[X]$.

(a) Is R a principal ideal domain? (Prove your answer.)

- (b) Find a prime ideal \mathfrak{p} such that R/\mathfrak{p} has four elements.
- (c) Show that $M = \mathbb{Z}[X]/(X^2 X, 4X + 2)$ is a finitely generated abelian group. Decompose M into a produce of cyclic groups. What is the order of |M|?

Hint: Determine the least $n \in \mathbb{Z} \cap (X^2 - X, 4X + 2)$ and the "least" nonconstant polynomial f not in $(X^2 - X, 4X + 2)$. Then show that the classes of 1 and f generate M.

Problem 16 (Spring 2013). Let R be a principal ideal domain and let I, J be two nonzero ideals of R. Show that $IJ = I \cap J$ if and only if I + J = R.

Problem 17 (Spring 2015). Let $R = \mathbb{Z}[2i] = \{a + 2bi \mid a, b \in \mathbb{Z}\}.$

(a) Compute the factor rings R/(2) and R/(2i). Are these rings isomorphic? (b) Is R a principal ideal domain?

Justify your answers.

Problem 18 (Fall 2016). Determine whether $\mathbb{Z}[\sqrt{-6}]$ is a principal ideal domain. Justify your answer.

Problem 19 (Spring 2019). Let R be an integral domain. Let $a \in R$ be a nonzero element which is not a unit. We say that a is irreducible if a = bc where $b, c \in R$ implies that either b or c is a unit. We say that a is prime if ad = bc where $b, c, d \in R$ implies that either b = aa' or c = aa' for some $a' \in R$.

Prove that if R is a principal ideal domain, then any irreducible element is prime.

3.2. Unique Factorization Domains.

Problem 20 (Spring 2017). Suppose that S is a unique factorization domain, and R is a subring of S with the following property: If $f \in S$ and $g \in R$ such that f divides g, then $f \in R$. Show that R must also be a unique factorization domain.

Hint: Show first that both rings must have the same units, i.e. that $R^* = S^*$.

Problem 21 (Spring 2018). Let R be a UFD, and let f be any nonzero, nonunit irreducible element of R. Prove that R/(f) is also a UFD or disprove by counterexample. What happens if R is also a PID?

3.3. Euclidean Domains.

Problem 22 (Fall 2009). We say that a ring R is a Euclidean Domain if there is a function $\delta : R \to \mathbb{Z}_{\geq 0}$ such that for each pair of elements a, bfrom R with b non-zero, there exists q and r in R such that a = bq + r and $\delta(r) < \delta(b)$. Show that $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ is a Euclidean domain.

Problem 23 (Fall 2020). Let R be the subring of $\mathbb{Q}[x]$ consisting of those polynomials $a_0 + a_2x^2 + \cdots + a_nx^n$ whose coefficient of x is 0. Show that x^2 is irreducible in R, but x^2 is not prime. Is R a Euclidean domain?