ABSTRACT ALGEBRA QUALIFYING EXAM PROBLEM SESSION: RINGS AND IDEALS

CALEB SPRINGER

Let me know if you find typos or have questions!
Email: cks5320@psu.edu

> Unless noted otherwise, the questions come from:
> The Pennsylvania State University's Abstract Algebra Qualifying Exam (2008-2020).
> https://math.psu.edu/graduate/qualifying-exams

1. Irreducible Polynomials

Problem 1 (Spring 2011). (a) Let $K=\mathbb{Z} / 2 \mathbb{Z}$. The only irreducible polynomials in $K[X]$ of degree ≤ 2 are $X, X+1$ and $X^{2}+X+1$. Using this, show that $X^{5}+X^{3}+1$ is irreducible in $K[X]$.
(b) Let r and s be odd integers. Prove that $X^{5}+r X^{3}+s$ is always irreducible in $\mathbb{Q}] X]$. You may use Gauss' Lemma.
Problem 2 (Fall 2016). Let F be a field of prime characteristic p such that the polynomial $X^{p}-X-1$ is reducible in $F[X]$. Show that it splits into a product of p distinct monic linear factors in $F[X]$. Justify your answers.
2. Describing and Counting (Prime/Maximal) Ideals

Problem 3 (Fall 2008). Let $R=\mathbb{Z}[x]$ be the ring of polynomials in one variable over the integers. For a prime number p, let I_{p} denote the ideal of R generated by p and $x^{2}+1$. For each of $p=2,3,5$, determines whether I_{p} is prime and determine all the maximal ideals of R containing I_{p}.
Problem 4 (Spring 2009). Let $R=\mathbb{Z}[i]$. For each of the following ideals in $R[x, y]$, decide whether it is a prime ideal, giving your justification. If it is not maximal, give a maximal ideal containing it.
(a) (x, y)
(b) $(x, 2 y)$
(c) $\left(x^{2}+1, y\right)$
(d) $\left(3, x^{2}+1, y\right)$
(e) $\left(5, x^{2}+1, y\right)$

Problem 5 (Spring 2010, Fall 2019). Determine the maximal ideals \mathfrak{m} of the polynomial ring $\mathbb{Z}[x]$ in one variable over the integers that contain the integer 30 and the polynomial $x^{2}+1$. Give explicitly two generators for each such maximal ideal \mathfrak{m}. How many such maximal ideals are there?

Problem 6 (Fall 2012). Let $R=\mathbb{Z}[x]$ be the ring of polynomials with integer coefficients and $I=\left(3, x^{2}+3 x+5\right)$ the ideal in R generated by 3 and $x^{2}+3 x+5$. Find all prime ideals of R containing I.

Problem 7 (Fall 2013). Find an ideal I in the ring $A=\mathbb{Z}[x]$ such that A / I has exactly three prime ideals. Identify the ideals and justify your assertion.

Problem 8 (Fall 2014). Let $F[x]$ be the ring of polynomials with coefficients in an algebraically closed field F. Describe, with justification,
(1) All ideals of $F[x] \times F[x]$.
(2) All prime ideals of $F[x] \times F[x]$.

Problem 9 (Spring 2014). Find all prime ideals in $R=\mathbb{Z}[i][x] /\left(1+i, x^{2}+2\right)$.
Problem 10 (Fall 2015). Count the number of prime ideals in the ring

$$
\mathbb{Z}[x, y] /\left(6,(x-2)^{2}, y^{6}\right)
$$

How many of these prime ideals are maximal? (The whole ring is not considered a prime ideal.)

Problem 11 (Fall 2017). Let R be the ring $\mathbb{Z}[x] /\left(x^{2}-2\right)$. Which of the following ideals are prime: (0),(2),(3),(7)? Which are maximal?

Problem 12 (University of Michigan, August 2020). Let I be the ideal $\left(x^{2}+1, y^{2}+1\right)$ in the ring $\mathbb{Q}[x, y]$. Show that I is not prime and give a prime ideal containing I. (We remind the reader that the ideal (1) is not considered to be prime.)

3. Integral Domains

Problem 13 (Spring 2012). Suppose that an integral domain D has a field F inside it, and D is a finite-dimensional vector space over F. Prove that D is actually a field itself.

Problem 14 (Fall 2018). Let us consider the ring

$$
\mathcal{O}=\{a+2 b \sqrt{6} \mid a, b \in \mathbb{Z}\}
$$

Prove that the multiplicative group \mathcal{O}^{*} of invertible elements of \mathcal{O} is infinite.

3.1. Principal Ideal Domains.

Problem 15 (Fall 2010). Consider the ring $R=\mathbb{Z}[X]$.
(a) Is R a principal ideal domain? (Prove your answer.)
(b) Find a prime ideal \mathfrak{p} such that R / \mathfrak{p} has four elements.
(c) Show that $M=\mathbb{Z}[X] /\left(X^{2}-X, 4 X+2\right)$ is a finitely generated abelian group. Decompose M into a produce of cyclic groups. What is the order of $|M|$?
Hint: Determine the least $n \in \mathbb{Z} \cap\left(X^{2}-X, 4 X+2\right)$ and the "least" nonconstant polynomial f not in $\left(X^{2}-X, 4 X+2\right)$. Then show that the classes of 1 and f generate M.

Problem 16 (Spring 2013). Let R be a principal ideal domain and let I, J be two nonzero ideals of R. Show that $I J=I \cap J$ if and only if $I+J=R$.

Problem 17 (Spring 2015). Let $R=\mathbb{Z}[2 i]=\{a+2 b i \mid a, b \in \mathbb{Z}\}$.
(a) Compute the factor rings $R /(2)$ and $R /(2 i)$. Are these rings isomorphic?
(b) Is R a principal ideal domain?

Justify your answers.
Problem 18 (Fall 2016). Determine whether $\mathbb{Z}[\sqrt{-6}]$ is a principal ideal domain. Justify your answer.

Problem 19 (Spring 2019). Let R be an integral domain. Let $a \in R$ be a nonzero element which is not a unit. We say that a is irreducible if $a=b c$ where $b, c \in R$ implies that either b or c is a unit. We say that a is prime if $a d=b c$ where $b, c, d \in R$ implies that either $b=a a^{\prime}$ or $c=a a^{\prime}$ for some $a^{\prime} \in R$.
Prove that if R is a principal ideal domain, then any irreducible element is prime.

3.2. Unique Factorization Domains.

Problem 20 (Spring 2017). Suppose that S is a unique factorization domain, and R is a subring of S with the following property: If $f \in S$ and $g \in R$ such that f divides g, then $f \in R$. Show that R must also be a unique factorization domain.
Hint: Show first that both rings must have the same units, i.e. that $R^{*}=S^{*}$.
Problem 21 (Spring 2018). Let R be a UFD, and let f be any nonzero, nonunit irreducible element of R. Prove that $R /(f)$ is also a UFD or disprove by counterexample. What happens if R is also a PID?

3.3. Euclidean Domains.

Problem 22 (Fall 2009). We say that a ring R is a Euclidean Domain if there is a function $\delta: R \rightarrow \mathbb{Z}_{\geq 0}$ such that for each pair of elements a, b from R with b non-zero, there exists q and r in R such that $a=b q+r$ and $\delta(r)<\delta(b)$. Show that $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ is a Euclidean domain.

Problem 23 (Fall 2020). Let R be the subring of $\mathbb{Q}[x]$ consisting of those polynomials $a_{0}+a_{2} x^{2}+\cdots+a_{n} x^{n}$ whose coefficient of x is 0 . Show that x^{2} is irreducible in R, but x^{2} is not prime. Is R a Euclidean domain?

